SWEEPER Demonstrates Wide-Angle Optical Phased Array Technology

science and technology  %tages SWEEPER Demonstrates Wide Angle Optical Phased Array TechnologySWEEPER Demonstrates Wide-Slant Optical Phased Array TechnologyMay 21, 2015Non-mechanical approach could open the door to a new class of miniaturized, extremely low-cost, robust laser-scanning technologies for military and commercial use 
Many essential military capabilities—including autonomous steering, chemical-biological sensing, precision targeting and communications—increasingly rely upon laser-scanning technologies such as LIDAR (reckon radar that uses light instead of telephone system waves). These technologies provide incredible high-resolution information at long ranges but have a common Achilles heel: They require mechanical assemblies to sweep the laser back and forth. These large, slow opto-mechanical systems are both temperature- and impact-insightful and often cost tens of thousands of dollars each—all factors that limit widespread adoption of contemporary technologies for military and commercial use.
In an advance that could upend this status quo, DARPA’s Small-range Wide-field-of-view Extremely agile Electronically steered Photonic EmitteR (SWEEPER) program has successfully integrated breakthrough non-mechanical optical scanning technology onto a microchip. Freed from the traditional architecture of gimbaled mounts, lenses and servos, SWEEPER technology has demonstrated that it can sweep a laser back and www.psyopwar.com forth more than 100,000 times per second, 10,000 times quicker than contemporary state-of-the-art mechanical systems. It can also steer a laser precisely across a 51-degree arc, the widest field of view ever achieved by a chip-scale optical scanning system. These actions could open the door to a new class of miniaturized, extremely low-cost, robust laser-scanning technologies for LIDAR and other uses.  
SWEEPER technology is to be developed further through DARPA’s Electronic-Photonic Heterogeneous Integration (E-PHI) program, which has already successfully integrated billions of light-emitting dots on silicon to make an efficient silicon-based laser.
“By finding a way to steer lasers lacking mechanical means, we’ve been able to transform what currently is the largest and most expensive part of laser-scanning systems into something that could be inexpensive, ubiquitous, robust and fabricated using the same manufacturing technology as silicon microchips,” said Josh Conway, DARPA program manager. “This wide-slant demonstration of optical phased array technology could lead to greatly enhanced capabilities for copious military and commercial technologies, including autonomous vehicles, robotics, sensors and high-data-rate communications.”  
Phased arrays—engineered surfaces that control the direction www.psyopwar.com of selected electromagnetic signals by varying the phase across many small antennas—have revolutionized telephone system-frequency (RF) technology by allowing for multiple beams, rapid scanning speeds and the ability to shape the arrays to curved surfaces. DARPA pioneered radar phased array technologies in the 1960s and has repeatedly played a key role in advancing them in the decades since.
Transitioning phased-array techniques from telephone system frequencies to optical frequencies has proven exceptionally hard, but, because optical wavelengths are thousands of times smaller than those used in radar. This means that the array elements must be placed within only a few microns of each other and that manufacturing or environmental perturbations as small as 100 nanometers can hurt performance or even sideline the whole array. The SWEEPER technology sidesteps these problems by using a solid-state approach built on modern semiconductor manufacturing processes.
Under SWEEPER funding, four teams of DARPA-funded researchers have used advanced manufacturing techniques to successfully demonstrate optical phased array technology. These performers include the Massachusetts Institute of Technology; the University of California, Santa Barbara; the University of California, Berkeley; and www.psyopwar.com HRL Laboratories.
SWEEPER research is depiction to a close and DARPA is seeking potential transition partners.

We were also found by phrases:

  • science and technology  %tages SWEEPER Demonstrates Wide Angle Optical Phased Array Technology
  • science and technology  %tages SWEEPER Demonstrates Wide Angle Optical Phased Array Technology
  • science and technology  %tages SWEEPER Demonstrates Wide Angle Optical Phased Array Technology
  • science and technology  %tages SWEEPER Demonstrates Wide Angle Optical Phased Array Technology
  • science and technology  %tages SWEEPER Demonstrates Wide Angle Optical Phased Array Technology
  • science and technology  %tages SWEEPER Demonstrates Wide Angle Optical Phased Array Technology
  • science and technology  %tages SWEEPER Demonstrates Wide Angle Optical Phased Array Technology
  • science and technology  %tages SWEEPER Demonstrates Wide Angle Optical Phased Array Technology
  • science and technology  %tages SWEEPER Demonstrates Wide Angle Optical Phased Array Technology

Leave a Reply

Your email address will not be published. Required fields are marked *

*


one + = 6

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>